

# Exploring the Material Science Behind the Top 5 Types of Underfoot Cushioning

Kelly Nelson Eric Beaudry



### **Meet the Team**



**Eric Beaudry** Global Technical Service Manager



Kelly Nelson Lead Technologist for Footwear



Jennifer Velasco Technical Sales and Design Support





## Agenda

#### What we will cover:

- Rogers Corp Brief Overview
- Creating Comfort in the Footwear System
- Underfoot Cushioning Options and Performance Indicators
- Enabling Footwear Innovation
- Questions/Discussion







## **Rogers Corporation – At a Glance**





## **Continuous Innovation**

# Rogers has a rich legacy of innovation and collaborative problem-solving with our customers

- Focused on customer-centric collaboration
- Partnering with global public and private industry, leading research universities and institutions
- R&D investment to create next-generation solutions
- Rogers Corporation Global Innovation Centers
  - Burlington, MA (Northeastern University)
  - Suzhou, China
  - Eschenbach, Germany



Rogers Innovation Center at Northeastern University in Burlington, MA



### **Guess the Material Type!**











### **Footwear System**



### Upper

- •Secures foot to shoe; attaches to lower components
- Protection from environment (resistance to abrasion, impact, etc.)
- Airflow for breathability
- Aesthetics and style

### Footbed

- Direct contact with foot
- Step-in and long-term comfort to the foot
- Enhances consumer's perceived comfort
- Supplements the midsole functionality and benefits

### Midsole

- Reduction of shock to the body (reduced leg fatigue)
- Visible comfort technology opportunity

### Outsole

- Purpose and material depend on style and function of shoe
- Protection from environment (resistance to slipping, chemical, etc.)





# **Considerations for Underfoot Cushioning**



#### Footbed:

Inside part of the shoe that runs under the bottom of the foot . . .

It may have many layers of construction and structural elements for better fit and comfort https://www.liveabout.com/what-is-the-footbed-of-a-shoe-2987680

### Footbed

#### Types:

- Removable
  - Insole or sockliner
- Permanent
  - Adhered to midsole or board
  - Strobel stitched to upper

### **Components:**

- Top Cover
  - Leather
  - Fabric
- Adhesive
  - Type and placement that promotes flexibility and breathability
- Cushioning material





# **Considerations for Underfoot Cushioning**



#### Footbed:

Inside part of the shoe that runs under the bottom of the foot . . .

It may have many layers of construction and structural elements for better fit and comfort https://www.liveabout.com/what-is-the-footbed-of-a-shoe-2987680

### Footbed

#### **Cushioning Material**

- Wide array of choices in varying levels of quality and performance
- Ideally, compliment and enhance the overall design
  - Maintain performance, shape and fit over the product lifetime
  - Retain neutral alignment and cushioning for long-term, "as-designed" comfort
- Select materials based on goals for your design
  - Trends (Comfort, Multi-Functional Use, etc.)
  - Category and style
  - Expected product life
  - Price point





# **Enduring the Footwear Environment**

### Underfoot cushioning material is under a variety of stresses during use

### Walking

- At average walking pace (3 mph), one step every 0.6 seconds
- Feet experience 1.5 to 2 times the pressure of standing

### Running

- Longer stride length and increased pace, one step every 0.3 seconds
- Feet experience 2 to 3 times body weight

### Perspiration and Elevated Temperature

- 250,000 sweat glands on the average pair of feet produce ¼ liter of sweat per day
- Foot temperature rises during activity as blood flow and core body temperature increases





# **Performance Indicators: Extending Product Life**

#### Indicators of performance that extend the comfortable life of footwear:

| Compression Set<br>Resistance | • Maintains fit, shape and cushioning without breaking down |
|-------------------------------|-------------------------------------------------------------|
|-------------------------------|-------------------------------------------------------------|

| Hydrolysis Resistance | • Moves moisture vapor while maintaining performance without breaking down to keep feet cool, dry and comfortable |
|-----------------------|-------------------------------------------------------------------------------------------------------------------|
|-----------------------|-------------------------------------------------------------------------------------------------------------------|





# **Ethylene Vinyl Acetate**

| Material Type | <i>Short Term</i><br>Performance |   |   |   |   | L | on<br>Perf | g T<br>orm | e r r<br>ance | n<br>9    | Price |   |   |   |        |  |
|---------------|----------------------------------|---|---|---|---|---|------------|------------|---------------|-----------|-------|---|---|---|--------|--|
| Rating Scale  | 1                                | 2 | 3 | 4 | 5 | 1 | 2          | 3          | 4             | 5         | 1     | 2 | 3 | 4 | 5      |  |
| EVA           |                                  |   | - | < |   |   |            |            |               | $\supset$ |       |   |   |   | $\geq$ |  |

Maintaining Fit, Shape and Cushioning



#### Cell Type: Closed



EVA: After Use

• Permanently molds and conforms to the foot after a period of wear



- EVA will have a firmer but less supportive feel after a short period of use
- Wearer will notice the change in cushioning experience and a different level of comfort





# **Synthetic Latex Foam**

| Material Type   | <i>Short Term</i><br>Performance |   |   |   |   |        | o n (<br>Perf | g T<br>orma | e r r<br>ance | n<br>: | Price |   |   |   |   |  |
|-----------------|----------------------------------|---|---|---|---|--------|---------------|-------------|---------------|--------|-------|---|---|---|---|--|
| Rating Scale    | 1                                | 2 | 3 | 4 | 5 | 1      | 2             | 3           | 4             | 5      | 1     | 2 | 3 | 4 | 5 |  |
| Synthetic Latex | $\leq$                           |   | - |   |   | $\leq$ | <             |             |               | >      |       | < |   |   | > |  |



#### Cell Type: Open

• Cells distort permanently under stresses and result in altered cushioning response

Load Bearing Support



After a simulation of the humid footwear environment:

- High moisture absorption
- Remains wet after 24 hour drying cycle
- Lower load bearing capability after moisture exposure





### Polyurethane

### **Differences in Fit, Shape and Cushioning**

20kU

| Material Type | <i>Short Term</i><br>Performance |   |   |   |   |        | o n<br>Perf | g T<br>orm | e r r<br>ance | n<br>9 | Price  |   |   |   |   |  |
|---------------|----------------------------------|---|---|---|---|--------|-------------|------------|---------------|--------|--------|---|---|---|---|--|
| Rating Scale  | 1                                | 2 | 3 | 4 | 5 | 1      | 2           | 3          | 4             | 5      | 1      | 2 | 3 | 4 | 5 |  |
| Polyurethane  | $\leq$                           |   |   | < |   | $\leq$ | _           |            | <             |        | $\leq$ |   | - |   |   |  |



#### Commodity Polyurethane



Commodity PU: New

Cell integrity changes, weakened support structure and cushioning capability

15 50 SEI

**PORON**<sup>®</sup> Comfort Polyurethane Technology





Cell Type: Engineered, Open Microcellular

Stable properties over product lifetime and after use for consistent performance





## Polyurethane

### **Differences in Load Bearing Support**

#### **Commodity PU**

Following one month of simulated use

- Reduction in load bearing support
- Change in comfort and potential for higher rates of fatigue to wearer

#### PORON<sup>®</sup> Comfort Polyurethane Technology

PORON Technology has the same load bearing and cushioning capability over time

- The wearer will have same experience after one month as when the shoe was worn for the first time
- Indicates long-term cushioning performance











## **Natural Rubber**





- Sustainable alternative to petroleum based polymers
- Produced from sap of approximately 200 different plants
- Vulcanization creates the finished rubber product
- Elasticity, high tensile and tear strength
- Durable with resistance to fatigue

Maintaining Fit, Shape and Cushioning



#### Cell Type: Open

• Cell size variability due to natural source but durable even after use





Gel





Gel and Cellular PU under compression

- Fine particles dispersed in a continuous medium contained within an outer skin
- Highly viscous and behaves similar to a solid
- Shape is maintained even under compression
- Limited conformability produces firm cushioning experience



- Gel has high firmness and is incompressible
- Conformability and pressure distribution capability difference compared to cellular materials





# **Underfoot Cushioning Options - Scorecard**

| Material Type   | Short Term<br>Performance |   |   |   |   |           | o n<br>Perf | g T<br>orma | e r r<br>ance | n         | Price     |        |   |   |   |  |
|-----------------|---------------------------|---|---|---|---|-----------|-------------|-------------|---------------|-----------|-----------|--------|---|---|---|--|
| Rating Scale    | 1                         | 2 | 3 | 4 | 5 | 1         | 2           | 3           | 4             | 5         | 1         | 2      | 3 | 4 | 5 |  |
| EVA             |                           |   |   |   |   |           |             |             |               | >         |           |        |   |   | > |  |
| Gel             |                           |   |   |   | > | $\subset$ |             |             |               | >         |           |        | > |   | > |  |
| Synthetic Latex | $\subset$                 |   | _ |   |   | $\subset$ |             |             |               | $\supset$ | $\subset$ |        |   |   |   |  |
| Natural Rubber  | $\subset$                 |   | - |   |   | $\subset$ | _           | $\leq$      |               | >         | $\subset$ | $\leq$ |   |   | > |  |
| Polyurethane    | $\subset$                 |   |   |   |   | $\subset$ | _           |             |               |           |           |        |   |   |   |  |

- A range of performance exists within each material category
- Other important criteria to consider:
  - Compliance
  - Innovation capability
  - Global supply chain support





## **Enabling Footwear Innovation**

#### Shoe Construction



- Evolution of design to address consumer challenges
- 3D Printing

### Multi-Functional Use



- One-style-fits-allactivities footwear
- Next-generation materials that combine benefits
- Durability and long-lasting quality

### Wearable Technology



- Sensing capabilities
- Protecting sensitive electronics









# Thank you!