

Green or Greenwashed? In relation to desiccant types

- Environment
- Packaging
- Performance

Objective vs. Subjective Definitions

ORGANIC (in descending order of objectivity)

- Containing Carbon
- Related to or derived from living matter
- Produced without added chemical fertilizers, pesticides, antibiotics, hormones
- Healthy, Safe, "Natural" ("Organic does NOT mean it is safe, nutritious or healthy")

Natural

 "Existing in or caused by nature, not made or caused by humankind" Examples of Natural Things

- Kittens
- Rattlesnakes
- Asbestos
- Cyanide
- Puppies
- Deadly Nightshade

Environmental Impact

SILICA GEL

Synthetic material manufactured under high energy input.

High wastewater output.

Recyclable but economically not feasible.

CALCIUM CHLORIDE & STARCH

- Salt which is used as a food additive in food processing. 'GRAS' status by FDA.
- By- product from the Solvay process.
- Use of CaCl2 reduces waste storage needs.
- Recyclable but economically not feasible.

BENTONITE / DRY CLAY

- Natural clay product mined from calcium rich montmorillonite deposits.
- Open pit mining contributes to degradation of habitats and groundwater flows.
- Habitat rehabilitation not standard in many countries.
- Recyclable but economically not feasible.

Sustainable

Calcium Chloride: Is recycled from the production of

Soda Ash

* Soda Ash is an essential raw material used in the manufacture of glass, detergents and soaps, chemicals and other industrial products.

Packaging

CALCIUM CHLORIDE & STARCH (Plastic)

High mechanical resistance. (Will not tear easily)

Excellent water barrier.

Not biodegradable.

Recyclable but economically not feasible.

BENTONITE / DRY CLAY (Kraft Paper)

Low mechanical resistance (Can tear easily)

Hygroscopic & poor water barrier.

Biodegradable, but release of greenhouse gases CO2 and Methane during biodegradation.

20% of package weight is made of thermoplastic copolymers (glue) => not plastic but similar

Performance

Types of Desiccant - Performance Comparisons

Here are the FACTS on Performance:

CALCIUM CHLORIDE & STARCH

High absorption capacity: Absorbs up to 400% of original weight.

- 90% less desiccant needed compared to Silica Gel and Dry Clay.
- ABSORBS and CAPTURES moisture with no risk of moisture release back into the surrounding environment.
- Slower acting diffusion absorbent with high absorption and retention capacity.
- Slower activating desiccant: Continues to absorb for 3 months.
- Wide temperature application range between -5°C to +90°C.
- Keeps relative humidity steady when temperatures drop sharply.
- Suitable for all applications as inbox desiccant for ocean shipmen_Pt₂s₆ and long-term storage.

BENTONITE DRY CLAY/ SILICA GEL

Low adsorption capacity: Ad-sorbs Max 35% of its original weight.

- 10 times more product is required to protect the same area compared to Calcium Chloride desiccant.
- Ad-sorbs and releases moisture back into the air when it reaches max adsorption (30%) with a high risk of moisture release > 35°C.
 - Surface adsorbent with low adsorption and low retention capacity.
 - Fast activating desiccant: Reaches saturation within 3 days
- Narrow temperature application range between 15°C and 30°C.
 - Relative humidity increases to dangerous levels when temperatures drop sharply.

Not suitable for application as in-box desiccant for ocean shipments and long – term storage.

SUPER DRY Desiccant versus Clay Desiccant

Test environment: 30°C, 90%RH

	Super Dry DS 25g			Clay 32g		
Days	Weight (g)	Water retention(g)	Absorption Rate	Weight (g)	Water retention (g)	Absorption Rate
0	30	-	-	33.7	-	-
		÷	l	1		l I
3	57.8	27.8 🚺	111.1%	44.5	10.8 💧	33.8%
	l	1	÷	ł	l	i
5	71.2	41.2 🐪	164.7%	45.2	11.5 💧	35.9%
	l	I	l	I	l	i i
8	81.0	51.0	204.0%	45.3	11.6 💧	36.6%
	ł	!				
15	93.1	63.1	252.5%	45.1	11.4 💧	35.6%
		E				
25	105.6	75.6	302.4%	45.0	12.3 💧	38.4%

Super Dry typical effectiveness 60-120 days depending on conditions

Why is the desiccant ingredient important?

- SD absorbs nearly 3 time the amount of water vapor ending day 3, 6 times overall.
- Clay absorbs little after day 3.
- Clay outgasses water vapor into the cargo environment (day 15)

SUPER DE

SUPER DRY

SUPER DRY

SUPER DRY

SUPER DRY

SUPER DR

Contacts

Name :	Michael Hanrahan	Name :	Steve Ryan	
	SVP, Superdry Int'l Americas		VP, Mid-West Region,	
Phone :	201 679 4703		Super Dry Int'l Americas	
Email :	michael@superdrvers.com	Phone :	312 371 5438	
		Email :	steve@superdryers.com	

Name :	Mike Mickle	Name :	Fred Bi	
	Desicca LLC – US Distributor		EVP & O	
Phone :	904 742 1106	Phone :	(852) 95	
Email :	admin@superdryamericas.com	Email :	fred@s	

Fred Birnbaum (Hong Kong)
EVP & CCO at Super Dry International
(852) 9542 4019
fred@superdryers.com

PER DRY SUPERDRY[®] 000 UPER DRY SUPER D 0 0 $\mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0}$ **CONTAINER DESICCANT** PER DRY SUPER 6 6 0 0 0 0 0 0 0 DRY POLE IPER DRY 000 0 0 0 0 0 1000 0 0 0 0 0 0 0 0 $\mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O} \quad \mathbf{O}$ 0 0 0 0 0

Global Contact List Available Upon Request