FDRA Trade, Logistics, & Customs Meeting FOR MEMBERS

October 13, 2022 BOSTON

Critical updates for trade, customs, supply chain, and compliance executives and professionals

Moisture & Mold Damage Prevention, or The Curse of the Container

- 1. Why desiccant is necessary?
- 2. Product Categories
- 3. Usage Principles

HOT AIR!! - or - Why we need desiccants

Tempe	Temperature		Max. Water Content	
(°C)	(°F)	(g/m³)	(10 ⁻³ lb/ft ³)	
60	140	130.0	8.10	
<mark>50</mark>	122	83.0	5.20	
40	104	51.10	3.20	
30	86	30.40	1.90	
20	68	17.30	1.07	
10	50	9.39	0.59	
0	32	4.89	0.31	
-10	14	2.31	0.14	
-20	-4	1.05	0.066	

(Water Holding Capacity of Air)

Example: Free Moisture Released due to Temperature Variation:

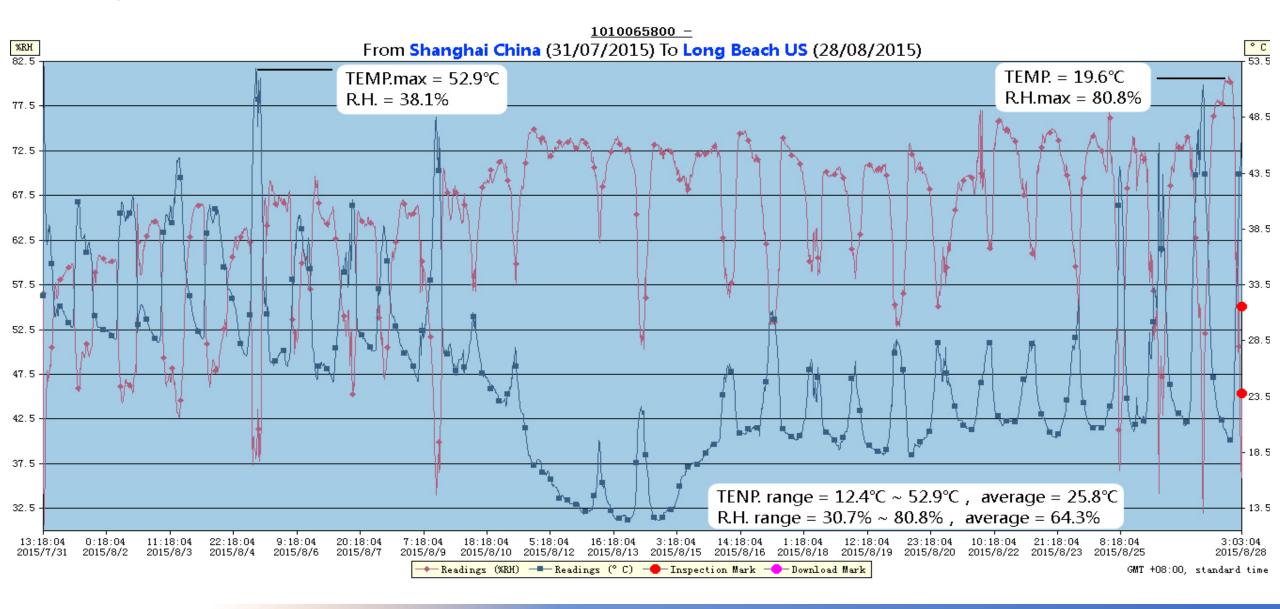
→ Temperature in closed Container after loading: 50 °C/122F

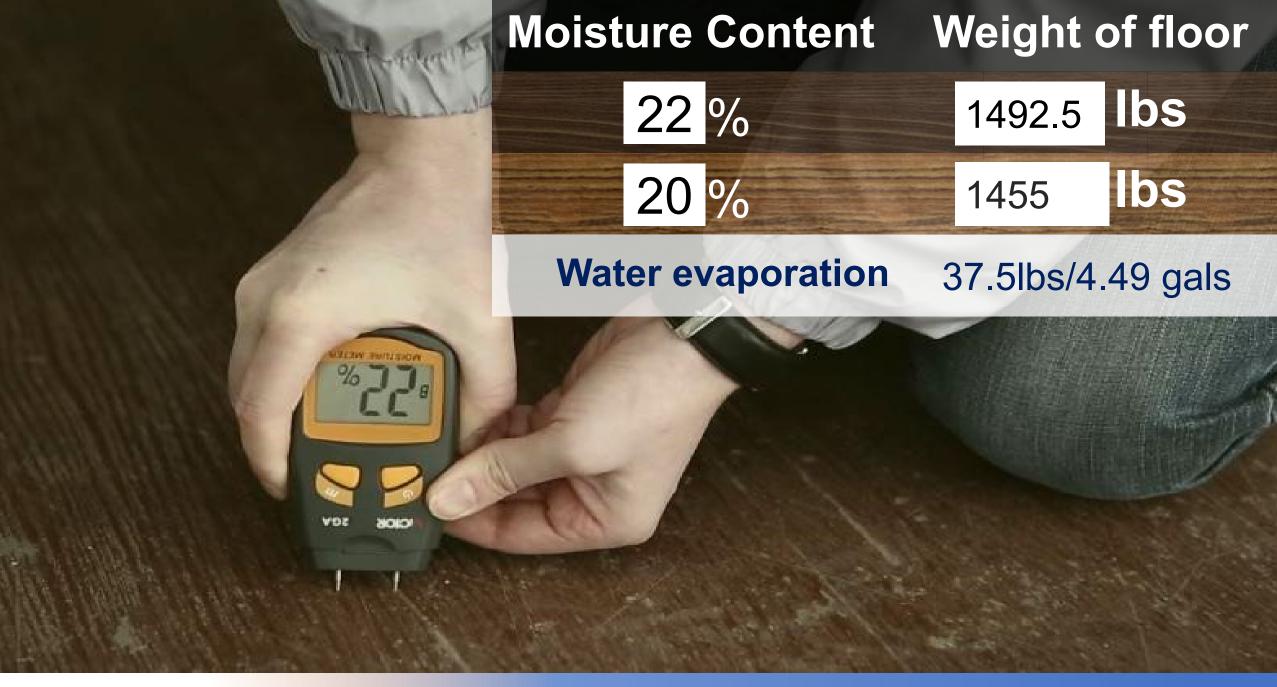
Water content in air at 95% humidity: 80grams/cbm

Temperature at sea: 10 ℃ /50F

Maximum water vapor content: 80grams/cbm - 9.4grams/cbm

Water vapor released in closed container per cbm = 70.6grams


70.6 grams per cbm \times 55cbm = 3.886 grams of water vapor, or


3.886 liters / 1.02 gallons

Why we need desiccants

Principles for Correct Usage

Broadly Speaking

Two Categories of Moisture and Mold Damage Preventative Products:

- 1. Anti-Microbials
- 2. Desiccants

Anti-microbial Products

VS

How it works:

Create an anti-microbial substance by reacting with water.

Kill growing mold

Super Dry Desiccants

How it works:

Cut off the water supply for mold growth by absorbing moisture

Prevent mold growth

Desiccant	Description	Application Temp	Absorption rate
	Silica gel Physical absorption Ingredient: SiO ₂	Below 35°C	10%-27%
	Clay Physical absorption Also called montmorillonite/smectite	Below 50°C	15%-30%
	Calcium Chloride Chemical absorption –Super Dry Desiccant Ingredient: CaCl ₂	-5°C-90°C	Up to 700%

SUPER DRY Desiccant versus Clay Desiccant

Test environment: 30°C, 90%RH

	Super Dry DS 25g		Clay 32g			
Days	Weight (g)	Water retention(g)	Absorption Rate	Weight (g)	Water retention (g)	Absorption Rate
0	30	-	-	33.7	-	-
İ	l l	i i	į.			
3	57.8	27.8 🐪	111.1%	44.5	10.8	33.8%
l	į.	l l	1	l l	l l	
5	71.2	41.2	164.7%	45.2	11.5 💧	35.9%
	İ	į.		ŀ	i i	
8	81.0	51.0	204.0%	45.3	11.6	36.6%
		1			l l	l l
15	93.1	63.1	252.5%	45.1	11.4	35.6%
İ		1	İ			
25	105.6	75.6	302.4%	45.0	12.3 💧	38.4%

Why is the desiccant ingredient important?

- SD absorbs nearly 3 time the amount of water vapor ending day 3, 6 times overall.
- Clay absorbs little after day 3.
- Clay outgasses water vapor into the cargo environment (day 15)

Super Dry typical effectiveness 60-120 days depending on conditions

Principles for Correct Usage

What are we really doing??

- 1. Treating a **defined** volume of air.
- 2. Determining that volume = DOSAGE

Suggested amount of desiccant

Product	Manner of packing	Weight of Desiccant
		2 <i>g</i>
		5 g

No Shoe box? Determining Carton Volume/Dosage – (metric)

Select the desiccant dosage based on your package size

Volume of the	Desiccant Dosage (g)		
package(CBM)	Wet season	Non-Wet season	
Less than 0.01	2	2	
0.01-0.029	5	4	
0.03-0.059	12	7	
0.06-0.089	20	12	
0.09-0.119	30	20	
0.12-0.19	<mark>40</mark>	<mark>25</mark>	
0.20-0.39	75	50	
0.40-0.59	125	75	
0.60-0.79	175	110	
0.80-1.00	250	150	

- <u>Package</u> refers to carton, inner box or poly bag, etc.
- Our desiccants come in different sizes (weights), i.e. 2g, 5g, 10g, 25g, 50g, and 100g. They can be combined to reach the required amount needed.

EXAMPLE

Carton Size = 85cm. X 34cm. X 53cm. = 0.153cbm

Recommendation: 40 grams wet season, 25 grams dry season

Thank you.

Questions?