CaCl2/Starch Desiccant Engineered for Ocean transport

Comparison of desiccant types:

- Environment
- Packaging
- Performance

Environmental Impact

SILICA GEL

- Synthetic material manufactured under high energy input.
- High wastewater output.
- Recyclable but economically not feasible.

CALCIUM CHLORIDE & STARCH *

- Salt which is used as a food additive in food processing. 'GRAS' status by FDA.
- By- product from the Solvay process.
- Use of CaCl2 reduces waste storage needs.
- Recyclable but economically not feasible.

BENTONITE / DRY CLAY

- Natural clay product mined from calcium rich montmorillonite deposits.
- Open pit mining contributes to degradation of habitats and groundwater flows.
- Habitat rehabilitation not standard in many countries.
- Recyclable but economically not feasible.

*Super Dry CaCl desiccant is PFAS-Free

Packaging

SILICA GEL (Plastic)

- High mechanical resistance.
 (Will not tear easily)
- Excellent moisture barrier.
- Material life cycle analysis:
 Energy usage = 30%
 Fossil fuel usage = 64%
 Greenhouse gas emissions = 50%
 Fresh water usage = 5%
- Not biodegradable.
- Recyclable but economically not feasible.

CALCIUM CHLORIDE & STARCH

(Plastic)

- High mechanical resistance.
 (Will not tear easily)
- Excellent moisture barrier.
- Material life cycle analysis:
 Energy usage = 30%
 Fossil fuel usage = 64%
 Greenhouse gas emissions = 50%
 Fresh water usage = 5%
- Not biodegradable.
- Recyclable but economically not feasible.

BENTONITE / DRY CLAY

(Kraft Paper)

- Low mechanical resistance (Can tear easily)
- Hygroscopic & poor moisture barrier.
- Material life cycle analysis:
 Energy used = 100%
 Fossil fuel used = 100%
 Greenhouse gas emissions = 100%
 Fresh water usage = 100%
- Release of greenhouse gases CO2 and Methane during paper biodegradation.
- Recyclable but economically not feasible.
- 20% of package weight is made of thermoplastic copolymers (glue) => not plastic but similar

Performance

SILICA GEL

- Low adsorption capacity:

 Adsorbs Max 30% of its original weight.
- 10 times more Silica Gel is required to protect the same area compared to Calcium Chloride desiccant.
- Adsorbs and releases moisture back into the air when it reaches max adsorption (35%) with a high risk of moisture release > 35°C.
- Surface adsorbent with low adsorption and low retention capacity.
- Fast activating desiccant:
 Reaches saturation within 3 days
- Narrow temperature application range between 15°C and 30°C.
- Relative humidity increases to dangerous levels when temperatures drop sharply.
- Not suitable for application as in-box desiccant for ocean shipments and long term storage.

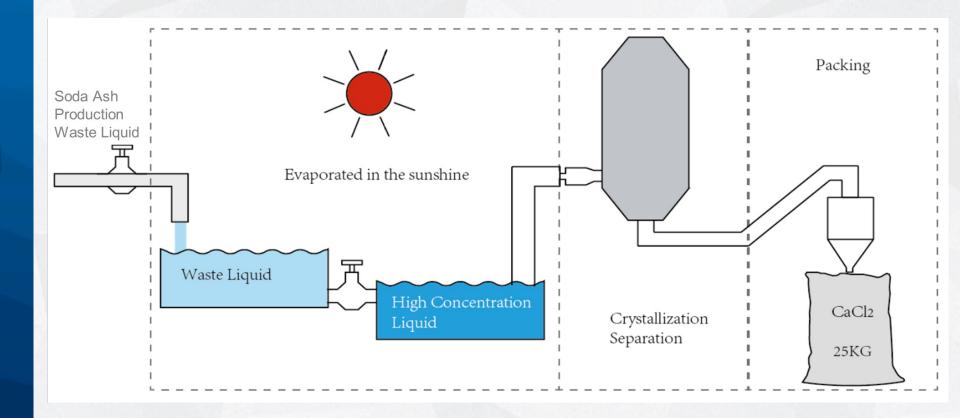
CALCIUM CHLORIDE & STARCH

- High absorption capacity:
 Absorbs up to 400% of original weight.
- 90% less desiccant needed compared to Silica Gel and Dry Clay.
- Absorbs and Captures moisture with no risk of moisture release back into the surrounding environment.
- Slower acting diffusion absorbent with high absorption and retention capacity.
- Slower activating desiccant :
 Continues to absorb for 3 months.
- Wide temperature application range between -5°C to +90°C.
- Keeps relative humidity steady when temperatures drop sharply.
- Suitable for all applications as in-box desiccant for ocean shipments and long-term storage.

BENTONITE / DRY CLAY

- Low adsorption capacity:

 Adsorbs Max 35% of its original weight.
- 10 times more dry clay is required to protect the same area compared to Calcium Chloride desiccant.
- Adsorbs and releases moisture back into the air when it reaches max adsorption (35%) with a high risk of moisture release > 35°C.
- Surface adsorbent with low adsorption and low retention capacity.
- Fast activating desiccant :
 Reaches saturation within 3 days
- Narrow temperature application range between 15°C and 30°C.
- Relative humidity increases to dangerous levels when temperatures drop sharply.
- Not suitable for application as in-box desiccant for ocean shipments and long term storage.


Sustainable

Calcium Chloride: Is recycled from

the production of

Soda Ash

* Soda Ash is an essential raw material used in the manufacture of glass, detergents and soaps, chemicals and other industrial products.

SUPER DRY Desiccant versus Clay Desiccant

Test environment: 30°C, 90%RH

Days	Super Dry DS 25g			Clay 32g		
	Weight (g)	Water retention(g)	Absorption Rate	Weight (g)	Water retention (g)	Absorption Rate
0	30	-	-	33.7	-	-
l	į.	ŧ	l l			į.
3	57.8	27.8 🐪	111.1%	44.5	10.8 🍐	33.8%
	1	l l	į.	İ	İ	
5	71.2	41.2	164.7%	45.2	11.5 🌢	35.9%
		i i	į.			į.
8	81.0	51.0	204.0%	45.3	11.6	36.6%
		1			l	
15	93.1	63.1	252.5%	45.1	11.4	35.6%
	i .	1				
25	105.6	75.6	302.4%	45.0	12.3 🍐	38.4%

Why is the desiccant ingredient important?

- SD absorbs nearly
 3 time the amount
 of water vapor
 ending day 3, 6
 times overall.
- Clay absorbs little after day 3.
- Clay outgasses water vapor into the cargo environment (day 15)

Super Dry typical effectiveness 60-120 days depending on conditions

Contacts

Name: Michael Hanrahan

SVP, Superdry Int'l Americas

Phone: 201 679 4703

Email: michael@superdryers.com

Name: Steve Ryan

VP, Mid-West Region,

Super Dry Int'l Americas

Phone: 312 371 5438

Email: steve@superdryers.com

Name: Mike Mickle

Desicca LLC - US Distributor

Phone: 904 742 1106

Email: admin@superdryamericas.com

Name: Fred Birnbaum (Hong Kong)

EVP & CCO at Super Dry International

Phone: (852) 9542 4019

Email: fred@superdryers.com

Global Contact List Available Upon Request